NOTE ON CHAPTER 26 OF DAVENPORT’S MULTIPLICATIVE
NUMBER THEORY

STEVE FAN

ABSTRACT. In Chapter 26 of Davenport’s classic book [4], it is shown that every sufficiently
large odd positive integer can be written as the sum of three primes. In this short note we
explain how the method used there can be modified to show that there are infinitely many 3-
term arithmetic progressions in the sequence of primes. The note resulted from the author’s
independent reading of [4, Ch. 26].

In [4, Ch. 26] it is shown that every sufficiently large odd positive integer can be written
as the sum of three primes. This is a consequence of Vinogradov’s asymptotic formula for

r(N) := Z A(ny)A(n2)A(ns),
ni+na+n3=N

where N is any positive integer. The formula states
1
F(N) = S6(N)N? + O(N?(log N) ),

where A > 0 is arbitrary but fixed, and &(N) is the singular series for the odd Goldbach
conjecture defined by

=TT o) T o)

In the present note we explain how the method used there can be modified with no difficulty
to show that there are infinitely many (nontrivial) 3-term arithmetic progressions in the
sequence of primes. This was first proved in 1939 by van der Corput [3], which follows
immediately from the following theorem.

Theorem. For every positive integer N, let

FIN) = > A(ni)A(n2)A(ng).

n1,m2,n3<N
ni1+nz=2n2

Then for any fired A > 0 we have
f(N) = 6&N? + O(N*(log N)™*),

(- 5t)

p>2

where

We introduce the variable N in the theorem to impose restrictions on the sizes of the
unknowns nq,no,ng of the equation n; + ny = 2ny. Note also that & is now a positive
number independent of N. From the above theorem we easily derive the following result as
a corollary.
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Corollary. As N — oo, the number of 3-term arithmetic progressions in primes up to N is
2

1
2(&+ o) g

Proof. Let
Ay :={(n1,n9,n3) € Z> N [1, NJ*: ny,ny, ns are prime powers and n; + ny = 2n3}
and ay = #Ay. It is clear that f(N) < ay(log N)3. By Theorem we obtain
. an
lim ————— > 6.
N%o N2Z(log N)=3 —
Let 6 € (0,1) be an arbitrary positive real number. Then it follows from Theorem that

any = Z 1+ Z 1

(n1,n2,n3)€EAN (n1,n2,n3)€EAN
n; <N? for some i n1,m2,n3>N9

<3N+ (logN)™0 Y A(na)A(ng)A(ns)

(n1,n2,n3)EAN
ni,ne,ns3 >N?¢

<5 3GN*(log N)® 4+ O5(N?*(log N) ™).

This implies
an
lim —————— < §7°6.
N N 2(log N)=3
Since 0 € (0,1) is arbitrary, we have

an
lim —————— < 6.
Noo N2(log N)—3 S

We have thus proved
2

(log N)*

Note that the contribution to ay from the triples (nq, ng, n3) € Ay such that not all nq, ny, n3
are prime is at most

v =(6+0(1))

3N log N 3/2
3N21<—Zl 8PS o5 7(VN) < N
v;év U>2

by Chebyshev’s estimate [10, Theorem 7|. Moreover, the contribution to ay from the triples
(p,p,p) € An for some prime p < N is

T(N) <

log N’

Hence the number of 3-term arithmetic progressions in primes up to N is

This completes the proof. 0]
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More generally, one can study k-term arithmetic progressions in primes for positive integers
k > 2. One may ask whether there are infinitely many k-term arithmetic progressions in
the sequence of primes. The case k = 2 is captured by the prime number theorem [10,
Theorem 6] and the case k = 3 was resolved by van der Corput [3] as mentioned above. It is
interesting to compare this problem to Szemerédi’s theorem and conjecture that primes do
contain arbitrarily long arithmetic progressions. Szemerédi’s theorem, conjectured by Erdds
and Turdn [5] in 1936 and proved in full generality by Szemerédi [12] in 1975, asserts that
any subset A of positive integers with positive upper density

= AN [L,N)

N—o0 N >0

must contain arbitrarily long arithmetic progressions. Unfortunately, since the sequence of
primes has natural density equal to 0, Szemerédi’s theorem does not apply at once. Major
progress was made by Green and Tao [6] in 2008 who proved that for every positive integer
k > 2, the primes contain infinitely many k-term arithmetic progressions. In fact, they
showed that any subset A of primes with positive relative upper density

= #AN[LN)

R S

must contain infinitely many k-term arithmetic progressions for every k& > 2. This is the
celebrated Green-Tao theorem, the proof of which uses an extension of Szemerédi’s theorem
to subsets of pseudorandom integers and depends heavily on deep machinery from ergodic
theory. It is now known [7, 8, 9] that for every k > 2, the number of k-term arithmetic
progressions in primes up to /N is

(6k+0(1))$7
where
oI (G2) L0550 (65)

Another conjecture of Erdés and Turdn [5] states that any subset A of positive integers with

1

.

neA n
contains arbitrarily long arithmetic progressions. It is well known [10, Theorem 19] that
Zp 1/p = o0o. Thus the conjecture of Erdés and Turén, if true, would imply at once that
the primes contain arbitrarily long arithmetic progressions. In fact, it is not hard to see that
this conjecture, if true, would include both Szemerédi’s theorem and the Green-Tao theorem
as special cases. For instance, suppose that A is a subset of positive integers with positive
upper density. Then there exist a constant ¢ € (0,1/2) and a strictly increasing sequence
{N;}2, of positive integers such that N;y1 > 2N; and A(N;) > 2cN; for all i > 1, where
A(x) :=#(AN[1,z]) for all x > 1. For any = € [V;,2N;] we have

Afz) _ AV
r — 2N;

>c
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It follows by partial summation that

1 2Nm g m_ 2N g
E —2/ (f)dxzcg / —dr = mclog2 — oo
1 Z 4 N, T
neAN[1,2Ny,] i=1 VN

as m — oo. This shows that the Erdos-Turan conjecture implies Szemerédi’s theorem.
By a similar argument together with Chebyshev’s estimate [10, Theorem 7], one can prove
that the Erdds-Turdan conjecture also implies the Green-Tao theorem. Unfortunately, the
conjecture does not apply to the set of twin primes, since Brun [2] showed that the sum of
the reciprocals of the twin primes converges. The Erdés-Turdn conjecture is currently open.’

Now we describe how to prove Theorem. Like that of estimating r(/N), the problem of
estimating f(N) is of complexity one from the point of view of higher order Fourier analysis,
meaning in particular that the circle method will often work effectively. As we shall see, only
modest changes need to be made. The starting point is the observation that

F(V) = / S(0)?S(~20) da.,

where
S(a) = Z A(n)e(na)
n<N
with e(z) = ¥ for any x € R. Put P := (logN)? and Q := N(log N)~8, where
B :=2A+10. To employ the circle method, we define a typical major arc 9%(q, a) centered
at a/q € Q, where ¢ < P and 1 < a < ¢ with ged(a,q) = 1, by

a 1
M(q,a ::{aeSlz oa— — §—},
(q,a) S
where S! := R/Z denotes the unit circle and ||z|| := mi%l |z — n|. As usual, let 9 be the
ne

union of these major arcs and let m := S'\ 9.
Consider now the major arc M(q, a). For a € M(q, a) we write « = a/q + (. It is proved
in [4, Ch. 26] that

S(a) = %T(ﬁ) (N exp(—c1+/log V) 0

for some constant ¢; = ¢;(B) > 0 depending only on B, where

T(B) := Z e(na).

n<N
It follows that

2
S(a)? = Z(L>T(B)2 + O(N? exp(—c14/log N)).
If 2 ¢, then we have similarly

S(—2a) = Z—T(—?ﬂ) + O(N exp(—c1y/log N)).

IThe case k = 3 has recently been settled by Bloom and Sisask [1] as a consequence of their estimate
that r3(N) < N/(log N)*¢ for some suitable ¢ > 0, improving Roth’s result [11] that r3(N) < N/loglog N.
Here r3(INV) is the size of the largest subset of {1,..., N} containing no 3-term arithmetic progressions.
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Thus we have

S(a)28(—2a) = &%LT(&)QT(—QB) + O(N? exp(—cyy/log N)).
On the other hand, if 2 | ¢, then we replace ¢ by ¢/2 in the derivation of (1) to get

S(—2a) = ::EZZ; T(—28) + O(N exp(—c14/log N)).

It follows that

S(a)S(~20) = ST (P (-26) 4 OV exp( -1/ og )
=~ BT (GPT(-25) + O exp(—ex/Tog V).

Hence the contribution of M(q,a) to f(N) is

1/Q
(—1ye1 2D / T(B)*T(~28) dB + O(N* exp(—cs+/log N)),

v(0)* J-1/q
where ¢y = ¢3(B) > 0 depends only on B. Therefore, the contribution of 9t to f(V) is

1/Q
S D [ s (-25) 45 + O expl—cs/Tog ), @)

= v(9)? Jo10

where ¢35 = ¢3(B) > 0 depends only on B. Following [4, Ch. 26] we see that

1/Q 1/Q 1
/_ T(8)°T(~26) df = /0 T(8)°T(~26) df + / | TErT(-28) ds

Ve 1 1-1/Q
_ / T(8)T(—28) df — T(B)°T(—28) dB
0 1/Q
and
1-1/Q 1-1/Q 1/2
/ T(8)°T(~28)dB| < N 1812d8 =2N [ B2dB < N*(log N)~P
1/Q 1/Q 1/Q

Observe that

1
/ T(B)’T(—2B)dB = #{(n1,n2,n3) € Z> N [1, N]*: ny + ny = 2n3}
0

b

:7+O( );

where |z] denotes the integer part of x for any = € R. Tt follows that

1/Q N2
[, TOPT28)d5 = S+ O(¥*(log M) #) )
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A well-known result [10, Theorem 327] states

o(n)
Jim 5 =0

for any given ¢ > 0. To see this, note that ¢ is multiplicative and that

m 1 1
Sp(p ) — pm5 (1 o _) > _pm5 00
p 2

pm(lf(s)

as p" — oo. Taking 6 = 1/(2B) we obtain

1
Z <Z 2(1 5 <P 2 = (log )P

ela)? 7
Hence the series
i(_l)q_l 1(q)
g v(g)?

is absolutely convergent. It has the infinite product expansion

I1 (1 (gt A0) ) = 26.

. (p)?

Thus we have

S (-1t ;‘(f))g = 26 + O((log N)~B+1).

Combining this with ( and (3) we see that the contribution of 9t to f(N) is
/ S(a)?S(—2a) da = EN? + O(N?(log N)~B+1). (4)

Now we consider the contribution of m to f(N). Let @« € m. By Dirichlet’s theorem on
Diophantine approximation, there exists a/q € Q with ¢ < P and ged(a,q) = 1 such that
o~ afall < 1/4Q. Then

H—2a+2—a —2a—|—2—a—|—n —2oz—|—2—a—|—n a2 %
q q q q q
Note that the estimate (2) in [4, Ch. 25] is still valid under the weaker assumption that
o —a/q|| < 1/¢*. As in [4, Ch. 26], we have P < ¢ < Q,

< min =2

ne27

<
neL

‘:min

1
/ |S(a)|* da < Nlog N,
0

and
S(—2a) < N(log N)~B/2+4,
Hence the contribution of m to f(N) is

/S 2a da < (maX|S( 2@ / |S |2 da < NQ(IOgN) B/2+5 (5)

Combining (4) and (5) and noting that —B/2 + 5 = —A we obtain
f(N) = &N? + O(N?*(log N)™4).



NOTE ON CHAPTER 26 OF DAVENPORT’S MULTIPLICATIVE NUMBER THEORY 7

We remark that the method may be adapted to estimate the number of solutions (py, ..., k)
to the linear equation a1py + ... + agpr = b with py,...,pr < N for k > 2, where aq,...,a; €
Z \ {0} are coprime and do not have the same sign. Naturally, we are led to considering

/0 S(aya)S(aza) - - - S(ara)e(—ba) da.

One can define the major arc 9 and the minor arc m in the same way. The estimation
of the contribution of 91 is similar but more complicated, where the arithmetical features
of ay,...,a; play a vital role in determining the main term, while the estimation of the
contribution of m needs slight modifications. Note that

k

SUTECRDN

/S(ala)S(aga) < S(apa)e(—ba) do

by Holder’s inequality. For each 1 < 5 < k, we have
1

1
/|S(aja)|kd0z§m€ax|5(aja)|k_2/ |S(aja)|2 da:meax|5(aja)|k_2/ |S(a)|2da.
m acm 0 acm

0
From here we can proceed as before. However, the method just described may fail to work
when the contribution of m dominates. One such example is the twin prime problem (k = 2,
a; = —1, ay = 1, and b = 2), in which case the above estimate for the contribution of m
dominates that of 91.
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